THE PROTEINS OF DONOR tRNA-BINDING SITE OF ESCHERICHIA COLI RIBOSOMES

S. N. VLADIMIROV, D. M. GRAIFER and G. G. KARPOVA

Institute of Organic Chemistry, Siberian Division of the USSR Academy of Sciences, Novosibirsk 630090, USSR

Received 1 October 1981

1. Introduction

A new photoreactive derivative of tRNA^{Phe} containing several arylazido-groups scattered statistically over the tRNA's guanine residues was proposed for photoaffinity labeling of tRNA-binding sites of ribosomes from *Escherichia coli* [1,2]. It was obtained in two steps:

- (i) Statistic alkylation of N7 atoms of guanosine in tRNA by 4-(N-2-chloroethyl-N-methylamino)benzylamine up to the average extent of modification 3-4 mol reagent/mol tRNA;
- (ii) Selective attaching of photoreactive groups to the aliphatic amino groups of reagent residues by treating of alkylated tRNA with 2,4-dinitro-5fluorophenylazide [1].

This derivative is competent for non-enzymatic, poly(U)-dependent binding with ribosomes and being bound may be crosslinked with ribosome by UV-irradiation [1,2].

Here, we show this photoreactive derivative of tRNA^{Phe} (I) to bind only at the ribosomal P-site in the presence of the excess of ribosomes and poly(U). After UV-irradiation of the ternary complex 70 S poly(U) · I the derivative of tRNA^{Phe} was covalently linked to 30 S and 50 S ribosomal subunits. We have found that the proteins S5, S9, S11, S12, S13, S19 and S21 were labeled in the 30 S subunits and the proteins L11, L13, L14 and possibly L27 in the 50 S ones. No modification of 16 S and 23 S RNAs was observed.

2. Materials and methods

Ribosomes were isolated from *E. coli* MRE-600 as in [3]. 4-(*N*-2-Chloroethyl-*N*-methylamino)-[¹⁴C]-benzylamine (25 mCi/mmol) was synthesized as in

[4,5]. 2,4-Dinitro-5-fluorophenylazide was prepared as in [6]. Poly(U) with av. $M_{\rm r}$ 30 000 was from SCTB of biologically active compounds (USSR). [14C]-Phenylalanine (360 mCi/mmol) was from UVVVR (Czechoslovakia), ATP was from Reanal (Hungary), RNases A and T₁ were from Sankyo Co. (Japan) and tRNAPhe was from Sigma. Phenylalanyl-tRNA-synthetase was a kind gift from Dr S. Khodyreva. Aminoacylation of tRNAPhe was done as in [7]. For isolation of Phe-tRNAPhe 1 ml reaction mixture was passed through the column with DEAE (DE-52)-cellulose (0.2 ml). The column was washed with 0.2 M NaCl and then Phe-tRNAPhe was eluted from the DEAE-cellulose with 1 M NaCl.

Alkylation of tRNAPhe under the conditions of the lability of the tRNA tertiary structure and following attaching of arylazido-groups to the aliphatic amine residues was performed as in [1]. The ternary complex 70 S ribosome · poly(U) · Phe-tRNAPhe was obtained in buffer A (0.05 M Tris-HCl (pH 7.3), 0.1 M NH₄Cl, 0.02 M MgCl₂) using 3-5-fold excess of ribosomes to tRNA at 0°C. In the experiments on inhibition of binding of [^{14}C]Phe-tRNAPhc to 70 S \cdot poly(U) complex by unlabeled I both tRNA species were added to the complex simultaneously. In the experiments with tetracycline (Tet) ribosomes were preincubated with Tet (4 × 10⁻⁵ M) at 0°C for 30 min. The ternary complex 70 S · poly(U) · I was formed in the buffer A at 0°C for 2 h. Concentrations of I, ribosomes and poly(U) were 10^{-6} M, 3.5×10^{-6} M and 0.1 mg/ml, respectively. To obtain the covalent bond between I and the ribosome the solution containing ternary complex was passed through a cuvette cooled to 13°C at a rate of ~2.4 ml/h. The cuvette was irradiated with a high pressure mercury lamp? (500 W), $\lambda \ge 350$ nm (glass and water filters). After irradiation the ribosomes were precipitated by adding 0.8 vol. ethanol and subsequent separation into 30 S

and 50 S subunits as in [8]. Separation of modified subunits into rRNA and proteins was done as in [9]. [14C]Protein fractions were dialysed against buffer B (0.02 M Tris-HCl, (pH 7.3), 0.01 M EDTA, 3 M urea) and concentrated against Sephadex G-75 or against 30% polyethyleneglycol in the same buffer. After this RNase T₁ (up to 20 units/ml) and RNase A (up to 0.04 mg/ml) were added with incubation following for 24 h at 40°C to hydrolyse tRNA covalently bound to the proteins. Then the reaction mixture was concentrated against 30% polyethyleneglycol in the buffer 0.02 M Tris -H₃BO₃ (pH 8.6), 7 M urea to 0.5 ml. Gel electrophoresis of the probe was performed as in [10]. Protein spots were cut out, followed by elution of proteins from the gel with 0.5% SDS at 40°C for 24 h and counting in a dioxan scintillator.

3. Results and discussion

One can assume the photoreactive tRNA derivative to bind at the ribosomal P-site with excess ribosomes [11]. Phe-tRNA Phe is really bound at the P-site under these conditions because the presence of 4×10^{-5} M Tet (inhibitor for binding of tRNA at the A-site [11]) results in decreasing the amount of ribosome-bound Phe-tRNA Phe < 10%. To prove the binding of I at the ribosomal P-site we used the competition assay between [14C]Phe-tRNA Phe and unlabeled I at the presence of poly(U) and Tet with excess ribosomes. Excess of I results in considerable decrease of binding of Phe-tRNA Phe at the P-site (fig.1). This indicates that both tRNA species bind to 70 S \cdot poly(U) complex at the same P-site.

In the presence of poly(U) and Tet up to 0.3 mol I can bind to 1 mol ribosomes (activity of the ribosomes in poly(U)-dependent non-enzymatic binding of $tRNA^{Phe}$ was \sim 60%).

To obtain tRNA-70 S crosslinks the ternary complex was irradiated and destroyed by centrifugation in a linear sucrose density gradient (10–30%) under the conditions of dissociation into subunits [8]. By this procedure we completely separated modified ribosomal subunits from non-bound I. To evaluate the contribution of unspecific photoreaction of I with ribosomes out of the complex the following experiment was carried out. Complex tRNA Phe . poly(U) \cdot 70 S was incubated with I in the presence of the excess tRNA Phe and then irradiated. The data on the distribution of the ^{14}C -label between the sub-

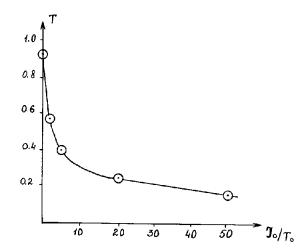


Fig.1. The dependence of amount of [14C]Phe-tRNAPhe bound to 70 S · poly(U) complex in the presence of Tet, upon the concentration of tRNAPhe photoreactive derivative (I). Each reaction mixture contained in 0.2 ml buffer A, 5 pmol 70 S ribosomes, 10 µg poly(U), 5 pmol [14C]Phe tRNAPhe, Tet (4 × 10⁻⁸ M) and 0–250 pmol unlabeled I with an extent of modification ~3 mol reagent/mol tRNAPhe; J_0 , starting concentration of [14C]Phe-tRNAPhe bound to 70 S · poly(U) complex (pmol).

units in the presence or absence of non-modified $tRNA^{Phe}$ are presented in table 1. It is seen that the extent of subunit modification from unspecific reaction is nearly 1 order of magnitude lower than for the same photoreaction in the complex for both subunits.

Ribosomal proteins were isolated from the modified 30 S and 50 S subunits by centrifugation in a linear sucrose density gradient (5–20%) in the presence of SDS and EDTA [9]. No modification of 16 S

Table 1
Relative distribution of the ¹⁴C-labeled tRNA^{Phe} photoreactive derivative (I) between 30 S and 50 S ribosomal subunits after irradiation

Ribosomal subunit	¹⁴ C incorporation (cpm)	
	With tRNAPhe	Without tRNAPhe
30 S	250	2000
50 S	100	1200

Each reaction mixture contained in 0.5 ml buffer A, 180 pmol I, 700 pmol 70 S ribosomes, 50 μ g poly(U) and in one case, 700 pmol tRNA Phe. Incubation at 0°C for 2 h before irradiation

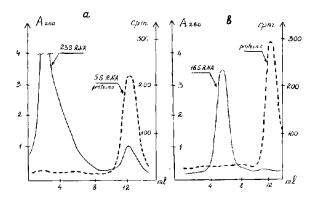
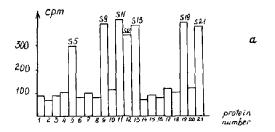



Fig.2. Sedimentation profiles of 50 S (a) and 30 S (b) modified ribosomal subunits in a linear sucrose density gradient (5-20%) in the presence of 0.5% SDS and 2 mM EDTA (Spinco L5-65, rotor SW-40, 40 000 rev./min, at 4°C for 17 h). (---) A_{260} ; (---) cpm.

and 23 S RNAs was observed (fig.2). This fact should not be due to the inability of the reagent to modify RNA. Arylazido-derivatives of tRNA containing a photoreactive group in the aminoacyl-residue were shown to crosslink with 23 S RNA [12] and on the 4-thiouridine residue with 16 S RNA [13].

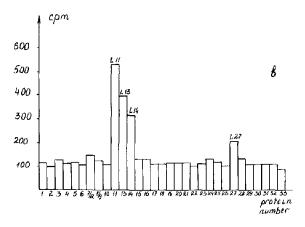


Fig.3. Distribution of the 14 C-label between 30 S (a) and 50 S (b) ribosomal proteins.

Our photoreactive derivative contains arylazidogroups scattered over the tRNA molecule statistically so we can assume that tRNA bound at the ribosomal P-site contacts dominantly with proteins. The proteins isolated from the modified subunits were subjected to complete RNase A and T₁ hydrolysis to remove tRNA residues covalently bound to the proteins. The results of two-dimensional gel electrophoretic analysis of the modified proteins are presented in fig.3 and show that proteins S5, S9, S11, S12, S13, S19, S21 were modified in the 30 S subunit and proteins L11, L13, L14 and possibly L27 in the 50 S one. The protein S9/S11 was shown earlier to be crosslinked with tRNAPhe in the ribosomal P-site after UV-irradiation ($\lambda = 254 \text{ nm}$) [14]. Using the method of reconstruction of ribosomal subunits from the proteins and rRNA after chemical modification of proteins it was shown that proteins S11 and S21 directly participate in tRNA-binding centre formation

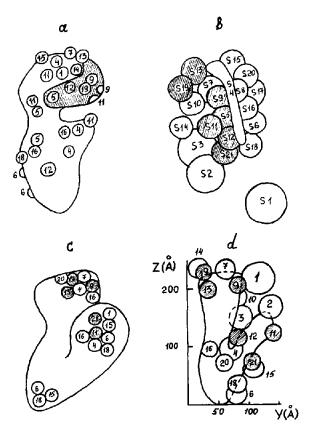


Fig.4. The models of 30 S ribosomal subunit: (a) from [21]; (b) from [22]; (c) from [19]; (d) from [20]. The proteins modified by photoreactive tRNA Phe analog in the ribosomal P-site according to our data are shaded.

[15]. Protein S19 takes part in IF-dependent fMettRNA $_{\rm f}^{\rm Met}$ binding to ribosomes [16]. Participation of the 50 S proteins L11, L13, L14 and L27 in P-site formation was shown using different tRNA derivatives containing reactive groups in the aminoacyl residue [17,18].

To date, several models are known of 30 S ribosomal subunit from E. coli obtained by different methods [19–22] for describing positions of proteins on the surface of the 30 S subunit. On the model in [21] which is the most complete for antigen determinants of the ribosomal proteins one can incorporate proteins found in the P-site according to our data into a compact group (see fig.4a). Other models of the E. coli 30 S ribosomal subunit (proteins found in the P-site are shaded) are also represented in fig.4: the model of [22] derived from the data on bifunctional crosslinks between the ribosomal proteins (fig.4b); the model of [19] derived from immunoelectron microscopy (fig.4c); the model of [20] (fig.4d). It is evident that the model in [21] is the most convenient for the explanation of our data. We can conclude that the P-site is located on the contact surface of the head of the 30 S ribosomal subunit. As for the 50 S subunit, only the model in [21] is known at present. Antigen determinants of proteins L11 and L14 are located close together on this model, determinant of the protein L13 is unfortunately absent.

It should be noted that >1/2 of our P-site proteins (S5, S9, S11, S13, S21) and none of 50S proteins were earlier found to be near the mRNA-binding centre of ribosomes from the data on affinity labeling of the ribosome by reactive mRNA analogs [23,24]. This implies the considerable overlapping of tRNA-binding P-site and mRNA-binding centre at the surface of the 30 S ribosomal subunit.

References

- Vlassov, V. V., Lavrik, O. I., Mamaev, S. V., Khodyreva, S. N., Tschizhikov, V. E. and Shvalie, A. F. (1980) Molekul. Biol. 14, 531-537.
- [2] Vlassov, V. V., Graifer, D. M., Karpova, G. G. and Tschizhikov, V. F. (1981) Bioorg. Khim. 7, 787-788.

- [3] Nirenberg, M. W. and Matthaei, H. (1961) Proc. Natl. Acad. Sci. USA 47, 1588-1602.
- [4] Belikova, A. M., Vakhrusheva, T. E., Vlassov, V. V., Grineva, N. I., Knorre, D. G. and Kurbatov, V. A. (1969) Molekul. Biol. 3, 210-220.
- [5] Bogachev, V. S., Veniaminova, A. G., Grineva, N. I. and Lomakina, T. S. (1970) Izv. Sib. Otd. Akad. Nauk SSSR, ser. Khim. iss. 6, 110-116.
- [6] Wilson, D. F., Miyata, Y., Erecinska, M. and Vanderkooi, J. M. (1975) Arch. Biochem. Biophys. 171, 104-107.
- [7] Knorre, D. G., Sirotjuk, V. I. and Stephanovich, L. E. (1967) Molekul. Biol. 1, 837-843.
- [8] Kobetz, N. D. and Karpova, G. G. (1980) Bioorg. Khim. 6, 1585-1586.
- [9] Turchinsky, M. F., Broude, N. E., Kusova, K. S., Abdurashidova, G. G. and Budovsky, E. I. (1977) Bioorg. Khim. 3, 1013–1019.
- [10] Howard, C. A. and Traut, R. R. (1973) FEBS Lett. 29, 177-180.
- [11] Kirillov, S. V., Kemkhadze, K. Sh., Makarov, E. M., Makhno, V. I., Odintsov, V. B. and Semenkov, Yu. P. (1980) FEBS Lett. 120, 221-224.
- [12] Girshovich, A. S., Bochkareva, E. S., Kramarov, V. M. and Ovchinnikov, Yu. P. (1974) FEBS Lett. 45, 213-217.
- [13] Shwartz, I. and Ofengand, J. (1978) Biochemistry 17, 2524-2530.
- [14] Abdurashidova, G. G., Turchinsky, M. F., Salikhov, T. A., Aslanov, Kh. A. and Budovsky, E. I. (1977) Bioorg, Khim. 3, 982-983.
- [15] Fanning, T. G., Cantrell, M., Shin, C. Y.-T. and Craven, G. R. (1978) Nucleic Acids Res. 5, 933-950.
- [16] Shimizu, M. and Craven, C. R. (1976) Eur. J. Biochem. 61, 307-315.
- [17] Oen, H., Pellegrini, M., Eilat, D. and Cantor, C. R. (1973) Proc. Natl. Acad. Sci. USA 70, 2799–2803.
- [18] Hauptmann, R., Czernilovsky, A. P., Voorma, H. O., Stoffler, G. and Kuchler, E. (1974) Biochem. Biophys. Res. Commun. 56, 331–337.
- [19] Lake, J. (1978) Adv. Tech. Biol. Electron Microscop. 11, 173-211.
- [20] Spirin, A. S., Serdijk, I. N., Shpungin, I. A. and Vasiliev, V. D. (1979) Molek. Biol. 13, 1384-1395.
- [21] Tischendorf, G. W., Zeichardt, H. and Stoffler, G. (1975) Proc. Natl. Acad. Sci. USA 72, 4820–4824.
- [22] Sommer, A. and Traut, R. R. (1976) J. Mol. Biol. 106, 995-1015.
- [23] Budker, V. G., Kobetz, N. D., Kollektzionok, I. E., Karpova, G. G. and Grineva, N. I. (1980) Molekul. Biol. 14, 507-515.
- [24] Gimautdinova, O. I., Karpova, G. G., Knorre, D. G. and Kobetz, N. D. (1981) Nucleic Acids Res. 9, 3465-3490.